Sari la conținut
ELFORUM - Forumul electronistilor

Un modest tutorial STM32F103C8T6 (Bluepill)


Postări Recomandate

Folosesc Eclipse + GCC si nivelul de optimizare folosit este -O3. Deocamdata ma joc cu un Nucleo F072, imi place ca are si doua canale DAC de 12bit iar preturile la STM32F0 sunt destul de scazute.

Remarc ca sunt mult mai relaxat cand programez STM32 decat in cazul uC-urilor pe 8bit si in STM32F4 o pot face si mai usor, in microPython.

Link spre comentariu
  • 2 luni mai târziu...
  • Răspunsuri 39
  • Creat
  • Ultimul Răspuns

Top autori în acest subiect

Top autori în acest subiect

Imagini postate

Salut din nou!

Astazi ne vom plictisi cu o alta facilitate oferita de unele dintre timerelele existente in STM32F103C8T6 (BluePill) si anume "Gated mode", adica facilitatea de a fi declansat de un impus exterior pentru o perioada bine definita de timp, perioada in care -declansat fiind de frontul crescator sau descrescator (functie de setari) - va incepe sa numere impulsuri provenite fie de la oscilatorul intern, fie provenite de la un semnal periodic extern microcontroller-ului.

In acest moment nu cred ca mai este necesar sa insist cu privire la primii pasi de lansare a unui nou proiect in CubeMX, asa ca trecem la partea concreta a lucrurilor.

Facem setarile pentru ST_Link (Serial wire), RCC (High speed Clock HSE - Crystal/ceramic resonator) si pentru TIM2, TIM3 si TIM4 (acesta din urma pentru generarea unui semnal dreptunghiular de test), ca in fotografia de mai jos:

 - Pentru situatia in care nu folosim functia de declansare a TIM2 in varianta "Gated mode", ci doar utilizam TIM2 pentru numaratoarea unor impulsuri externe aplicate pe pinul ETR2 (PA.0), urmand ca funtia de poarta sa fie realizata cu un bistabil tip D si o poarta SI, a carei comanda de declansare a portii este realizata de pinul GATE (PA.3, in acest caz), la care este disponibil un semnal cu perioada de 0.5Hz generat de TIM3.

 

Pinout_config.thumb.png.a841634f6a923aee3fe20935cf15ac3d.png

 

- Pentru varianta in care folosim ca poarta pinul TI2FP2 (corespunzator PA.1), atunci realizam urmatoarea setare (fotografia de mai jos):

TIM2_gated_config.thumb.png.801696f62f369d8587718e5afeefc397.png

 

In aceasta ultima varianta, semnalul de poarta provenit de la pinul GATE va actiona pinul TI2FP2 si va determina declansarea TIM2 in vederea numararii impulsurilor aplicate pe pinul ETR2.

Urmatorul pas este sa configuram cele trei timere (TIM2, TIM3 si TIM4) pentru ca acestea sa actioneze in spiritul dorintelor noastre, respectiv TIM2 ca numarator (cu sau fara functia de Gated mode), TIM3 ca baza de timp pentru generarea semnalului de poarta (1 secunda in starea "1" logic, 1 secunda in starea "0" logic) si TIM4 pentru generarea semnalului de test, incazul de fata de 18MHz.

Asa ca realizam setarile ca mai jos:

 

- Fara facilitatea de "Gated mode"

TIM2

TIM2_config_1.thumb.png.48878ee2a6de61a0040130bf5eb24295.png

 

si intreruperea pentru TIM2

TIM2_config_2.thumb.png.7a5b399e7f31850cf75556c5204c8272.png

 

TIM3

 

TIM3_config_1.thumb.png.8b217d80fd08af8466302b6eaae64c23.png

 

si intreruperea pentru TIM3

 

TIM3_config_2.thumb.png.c0ae4e5914e231bdae2c9c7b2c3b5fd3.png

 

TIM4

 

TIM4_config.thumb.png.66187e55c511809a3898dcff11e60043.png

 

Pentru functia de "Gated mode" prezint doar setarile pentru TIM2, restul raman neschimbate.

 

TIM2_gated_settings_1.thumb.png.e6b7a483d202d445cf6bd0e4ebbbf309.png

 

si intreruperea pentru TIM2

 

TIM2_gated_settings_2.thumb.png.7d999af9909b2ee87ec67d7bcabf02fb.png

 

Generam proiectul prin apasarea icon-ului "Generate source code..." si vom obtine fisierul "main.c" (alaturi de celelalte fisiere generate de CubeMX), care contine setarile pentru starea de reset a microcontroller-ului, respectiv:


/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  ** This notice applies to any and all portions of this file
  * that are not between comment pairs USER CODE BEGIN and
  * USER CODE END. Other portions of this file, whether 
  * inserted by the user or by software development tools
  * are owned by their respective copyright owners.
  *
  * COPYRIGHT(c) 2019 STMicroelectronics
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f1xx_hal.h"

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
uint32_t timer_count = 0;
uint32_t OvfCount = 0;
uint32_t NbrOfCounts = 0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM4_Init(void);

void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
                                

/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  *
  * @retval None
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration----------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
  MX_TIM4_Init();
  /* USER CODE BEGIN 2 */
  HAL_TIM_Base_Start_IT(&htim3);
  HAL_TIM_Base_Start_IT(&htim2);
  HAL_TIM_OC_Start(&htim4, TIM_CHANNEL_1);
  HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

  /* USER CODE END WHILE */

  /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */

}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure the Systick interrupt time 
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

    /**Configure the Systick 
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* TIM2 init function */
static void MX_TIM2_Init(void)
{

  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;

  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 0;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 0xffff;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2;
  sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED;
  sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1;
  sClockSourceConfig.ClockFilter = 0;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/* TIM3 init function */
static void MX_TIM3_Init(void)
{

  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;
  TIM_OC_InitTypeDef sConfigOC;

  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 7199;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 9999;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}

/* TIM4 init function */
static void MX_TIM4_Init(void)
{

  TIM_ClockConfigTypeDef sClockSourceConfig;
  TIM_MasterConfigTypeDef sMasterConfig;
  TIM_OC_InitTypeDef sConfigOC;

  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 0;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 1;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  if (HAL_TIM_OC_Init(&htim4) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  sConfigOC.OCMode = TIM_OCMODE_TOGGLE;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

  HAL_TIM_MspPostInit(&htim4);

}

/** Configure pins as 
        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct;

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : GATE_Pin */
  GPIO_InitStruct.Pin = GATE_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GATE_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @param  file: The file name as string.
  * @param  line: The line in file as a number.
  * @retval None
  */
void _Error_Handler(char *file, int line)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

Si pentru ca trebuie sa avem si noi o contributie la ce a generat "inteligenta artificiala" vom adauga exact parte esentiala, si anume tratarea intreruperior, respectiv  aceasta portiune de cod:

 

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
static uint16_t pinstate = 0;
	if(htim->Instance == TIM3)
	{
	{
		__HAL_TIM_CLEAR_IT(&htim3, TIM_FLAG_UPDATE);
	}
   pinstate = HAL_GPIO_ReadPin(GATE_GPIO_Port,GATE_Pin);
	if( !pinstate)
	{
		HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, SET);


	} 	else
	{
		HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET);
		timer_count = TIM2->CNT;
		NbrOfCounts = (OvfCount<<16)|(timer_count);
		TIM2->CNT = 0;
		OvfCount = 0;
	}
	}

	if(htim->Instance == TIM2)
	{
	{
		__HAL_TIM_CLEAR_IT(&htim2, TIM_FLAG_UPDATE);
	}
	OvfCount++;
	}
}

in zona cuprinsa intre /* USER CODE BEGIN 4 */ si  /*USER CODE END 4*/.

Compilam programul si nu ne mai rqamane decat sa implementam functia de poarta folosind un 74HC74 si un 74HC08, ca mai jos:

 

gate.thumb.png.25c940e2d3774af18a639264b518aad1.png

 

Daca folositi STM Studio veti obtine in dreptul variabilei NbrOfCounts valoarea de 18000005 Hz (cu setarile de mai sus).

Restul prezentarii mai tarziu.

Editat de nico_2010
Link spre comentariu
  • 10 luni mai târziu...

Astazi va propun o aplicatie practica a timere-lor din STM32F103C8T6.

Pentru a nu deveni plictisitor cu setarile (pe care presupun ca le-ati inteles, din tutorial), voi trece la aspectele concrete ale aplicatiei.

Un prim aspect al acestei aplicatii este acela ca foloseste doua timere (TIM2 si TIM3) de 16 biti inseriate software pentru a obtine un contor de impulsuri de 32 de biti De ce am ales varianta asta: pentru a evita intreruperile.

Un alt aspect este acela ca unul din cele doua timere (TIM2) este folosit ca "Slave" in configuratia "Gated mode" ce are ca trigger TI2FP2 si sursa de semnal (CLOCK) externa. Timerul TIM3 este setat, de asemenea, in ca "Slave", in configuratia "Gated mode", insa in cazul lui sursa de semnal (CLOCK) va fi indeplinita de un semnal intern (ITR1) asigurat de evenimentul "UPDATE" generat de TIM2.

Semnalul de poarta este asigurat de TIM1, care functioneaza in regim de intreruperi cu frecventa de 0.5Hz  1Hz, iar pinul PA3 (GATE) este comutat din LOW in HIGH la fiecare secunda.

Cam asa arata setarile:

 

Pinout:

 

TIMER_settings_1.thumb.png.10d4d9c36261a9e88659ae476f44b416.png

 

Clock:

 

clock_config.thumb.png.c1b0a39b7998db9c95d71433f569aa07.png

 

TIMER1_config + setari de intreruperi:

TIM1_config_1.thumb.png.f51dad05330395a52694a8d8aebc1e2b.png       TIM1_config_2.thumb.png.991b2a40f452485582f76bbe702f8a4a.png

 

TIMER2_config:

 

TIM2_config.thumb.png.7dedc88fb3198acd1bd993b08aba5186.png

 

TIMER3_config:

 

TIM3_config.thumb.png.7db3ed6974be082e013b71c37f9149fe.png

 

Si fisierul "main:

 

/**
 ******************************************************************************
 * @file           : main.c
 * @brief          : Main program body
 ******************************************************************************
 ** This notice applies to any and all portions of this file
 * that are not between comment pairs USER CODE BEGIN and
 * USER CODE END. Other portions of this file, whether
 * inserted by the user or by software development tools
 * are owned by their respective copyright owners.
 *
 * COPYRIGHT(c) 2019 STMicroelectronics
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
 */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f1xx_hal.h"

/* USER CODE BEGIN Includes */
#include "u8glib/u8g.h"
#include "u8g_arm.h"
#include "string.h"
#include "stdio.h"
#include "stdint.h"
/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi2;

TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
u8g_t u8g;
uint16_t Tim2_Ticks, Tim3_Ticks;
unsigned long frequency = 0;
char data_ready = 0;
char c[50];

/*Varianta soft de calibrare, din pacate este specifica fiecarui modul BluePill*/
#define CORRFACTOR 1.0000775060067155204528350947198
/*------------------------------------------------------------------------------*/

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI2_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);

/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
 * @brief  The application entry point.
 *
 * @retval None
 */

int main(void) {
	/* USER CODE BEGIN 1 */

	/* USER CODE END 1 */

	/* MCU Configuration----------------------------------------------------------*/

	/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
	HAL_Init();

	/* USER CODE BEGIN Init */

	/* USER CODE END Init */

	/* Configure the system clock */
	SystemClock_Config();

	/* USER CODE BEGIN SysInit */

	/* USER CODE END SysInit */

	/* Initialize all configured peripherals */
	MX_GPIO_Init();
	MX_SPI2_Init();
	MX_TIM1_Init();
	MX_TIM2_Init();
	MX_TIM3_Init();
	/* USER CODE BEGIN 2 */
	HAL_TIM_Base_Start_IT(&htim1);
	HAL_TIM_Base_Start(&htim2);
	HAL_TIM_Base_Start(&htim3);
	HAL_GPIO_WritePin(RST_GPIO_Port, RST_Pin, RESET);
	HAL_Delay(10);
	HAL_GPIO_WritePin(RST_GPIO_Port, RST_Pin, SET);
	u8g_InitComFn(&u8g, &u8g_dev_pcd8544_84x48_sw_spi, u8g_com_hw_spi_fn);
	HAL_Delay(10);
	u8g_SetRot180(&u8g);

	HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET);
	/* USER CODE END 2 */

	/* Infinite loop */
	/* USER CODE BEGIN WHILE */
	while (1) {

		/* USER CODE END WHILE */

		/* USER CODE BEGIN 3 */
		sprintf(c, "%lu", frequency);
		u8g_FirstPage(&u8g);

		do {
			u8g.font = u8g_font_ncenR14;
			if(frequency ==0)
			{
				u8g_DrawStr(&u8g, 35, 25, c);
				u8g_DrawStr(&u8g, 30, 45, "Hz");
			}else{
			u8g_DrawStr(&u8g, 1, 25, c);
			u8g_DrawStr(&u8g, 30, 45, "Hz");
			}
		} while (u8g_NextPage(&u8g));
		HAL_Delay(100);
	}
	/* USER CODE END 3 */

}

/**
 * @brief System Clock Configuration
 * @retval None
 */
void SystemClock_Config(void) {

	RCC_OscInitTypeDef RCC_OscInitStruct;
	RCC_ClkInitTypeDef RCC_ClkInitStruct;

	/**Initializes the CPU, AHB and APB busses clocks
	 */
	RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
	RCC_OscInitStruct.HSEState = RCC_HSE_ON;
	RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
	RCC_OscInitStruct.HSIState = RCC_HSI_ON;
	RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
	RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
	RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
	if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	/**Initializes the CPU, AHB and APB busses clocks
	 */
	RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
			| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
	RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
	RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
	RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

	if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	/**Configure the Systick interrupt time
	 */
	HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);

	/**Configure the Systick
	 */
	HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

	/* SysTick_IRQn interrupt configuration */
	HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* SPI2 init function */
static void MX_SPI2_Init(void) {

	/* SPI2 parameter configuration*/
	hspi2.Instance = SPI2;
	hspi2.Init.Mode = SPI_MODE_MASTER;
	hspi2.Init.Direction = SPI_DIRECTION_2LINES;
	hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
	hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
	hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
	hspi2.Init.NSS = SPI_NSS_SOFT;
	hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
	hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
	hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
	hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
	hspi2.Init.CRCPolynomial = 10;
	if (HAL_SPI_Init(&hspi2) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

}

/* TIM1 init function */
static void MX_TIM1_Init(void) {

	TIM_ClockConfigTypeDef sClockSourceConfig;
	TIM_MasterConfigTypeDef sMasterConfig;
	TIM_OC_InitTypeDef sConfigOC;
	TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig;

	htim1.Instance = TIM1;
	htim1.Init.Prescaler = 7199;
	htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
	htim1.Init.Period = 9999;
	htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
	htim1.Init.RepetitionCounter = 0;
	htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
	if (HAL_TIM_Base_Init(&htim1) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
	if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	if (HAL_TIM_OC_Init(&htim1) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
	sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
	if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig)
			!= HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sConfigOC.OCMode = TIM_OCMODE_TIMING;
	sConfigOC.Pulse = 0;
	sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
	sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
	sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
	sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
	sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
	if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
	sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
	sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
	sBreakDeadTimeConfig.DeadTime = 0;
	sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
	sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
	sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
	if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig)
			!= HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

}

/* TIM2 init function */
static void MX_TIM2_Init(void) {

	TIM_ClockConfigTypeDef sClockSourceConfig;
	TIM_SlaveConfigTypeDef sSlaveConfig;
	TIM_MasterConfigTypeDef sMasterConfig;

	htim2.Instance = TIM2;
	htim2.Init.Prescaler = 0;
	htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
	htim2.Init.Period = 0xffff;
	htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
	htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
	if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2;
	sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED;
	sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1;
	sClockSourceConfig.ClockFilter = 0;
	if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED;
	sSlaveConfig.InputTrigger = TIM_TS_TI2FP2;
	sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_RISING;
	sSlaveConfig.TriggerFilter = 0;
	if (HAL_TIM_SlaveConfigSynchronization(&htim2, &sSlaveConfig) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
	sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
	if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig)
			!= HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

}

/* TIM3 init function */
static void MX_TIM3_Init(void) {

	TIM_SlaveConfigTypeDef sSlaveConfig;
	TIM_MasterConfigTypeDef sMasterConfig;

	htim3.Instance = TIM3;
	htim3.Init.Prescaler = 0;
	htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
	htim3.Init.Period = 0xffff;
	htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
	htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
	if (HAL_TIM_Base_Init(&htim3) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED;
	sSlaveConfig.InputTrigger = TIM_TS_ITR1;
	if (HAL_TIM_SlaveConfigSynchronization(&htim3, &sSlaveConfig) != HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

	sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
	sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
	if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig)
			!= HAL_OK) {
		_Error_Handler(__FILE__, __LINE__);
	}

}

/** Configure pins as 
 * Analog
 * Input
 * Output
 * EVENT_OUT
 * EXTI
 */
static void MX_GPIO_Init(void) {

	GPIO_InitTypeDef GPIO_InitStruct;

	/* GPIO Ports Clock Enable */
	__HAL_RCC_GPIOD_CLK_ENABLE()
	;
	__HAL_RCC_GPIOA_CLK_ENABLE()
	;
	__HAL_RCC_GPIOB_CLK_ENABLE()
	;

	/*Configure GPIO pin Output Level */
	HAL_GPIO_WritePin(GPIOA, GATE_Pin | RST_Pin, GPIO_PIN_RESET);

	/*Configure GPIO pin Output Level */
	HAL_GPIO_WritePin(GPIOB, DC_Pin | CE_Pin, GPIO_PIN_RESET);

	/*Configure GPIO pins : GATE_Pin RST_Pin */
	GPIO_InitStruct.Pin = GATE_Pin | RST_Pin;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

	/*Configure GPIO pins : DC_Pin CE_Pin */
	GPIO_InitStruct.Pin = DC_Pin | CE_Pin;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Pull = GPIO_NOPULL;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
	static uint16_t pinstate = 0;
	if (htim->Instance == TIM1) {
		__HAL_TIM_CLEAR_IT(&htim1, TIM_FLAG_UPDATE);

//		HAL_GPIO_TogglePin(GREEN_LED_GPIO_Port, GREEN_LED_Pin);
		pinstate = HAL_GPIO_ReadPin(GATE_GPIO_Port, GATE_Pin);
		if (!pinstate) {
			HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, SET);

		} else {
			for(uint16_t i = 0;i<5000; i++){}
			HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET);
			Tim2_Ticks = TIM2->CNT;
			Tim3_Ticks = TIM3->CNT;
			frequency = ((Tim3_Ticks << 16) | (Tim2_Ticks))* CORRFACTOR;
			TIM2->CNT = 0;
			TIM3->CNT = 0;

		}
	}
}

/* USER CODE END 4 */

/**
 * @brief  This function is executed in case of error occurrence.
 * @param  file: The file name as string.
 * @param  line: The line in file as a number.
 * @retval None
 */
void _Error_Handler(char *file, int line) {
	/* USER CODE BEGIN Error_Handler_Debug */
	/* User can add his own implementation to report the HAL error return state */
	while (1) {
	}
	/* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
 * @brief  Reports the name of the source file and the source line number
 *         where the assert_param error has occurred.
 * @param  file: pointer to the source file name
 * @param  line: assert_param error line source number
 * @retval None
 */
void assert_failed(uint8_t* file, uint32_t line)
{
	/* USER CODE BEGIN 6 */
	/* User can add his own implementation to report the file name and line number,
	 tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
	/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/**
 * @}
 */

/**
 * @}
 */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

Am aplicat un semnal de 1MHz provenit din modulul u-blox NEO_M8N (care are TCXO).

Rezultatul

IMG_20191223_1321194_compressed.thumb.jpg.f43d0e228e29dbb9acc2f015ea361f9d.jpg

 

Si ceva mai funky:

GPS_ref.thumb.png.7a91134a248565063502986af14e9241.png     IMG_20191223_1358587.thumb.jpg.65b9cea22704e52084009628431189f9.jpg

 

Si schema de principiu:

 

STM32_FCV_simplu.pdf

Editat de nico_2010
Link spre comentariu
  • 4 săptămâni mai târziu...

Am incercat sa fac update la libraria mea pt Blue pill cu

STSW-STM32054  si nu sa intamplat nimic in afara de dezarhivare? Cum trebuia procedat.

Am incercat sa rezolv eroarea "no source": Error:  #869: could not set locale "" to allow processing of multibyte characters
../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c: 0 warnings, 1 error
compiling stm32f1xx_hal_flash.c...
"no source": Error:  #869: could not set locale "" to allow processing of multibyte characters
../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c: 0 warnings, 1 error
compiling system_stm32f1xx.c...

eroarea apare imediat dupa ce CubeMX genereaza codul pt setarile procesorului..

Nu stiu daca am ales solutia potrivita..

 

 

Link spre comentariu

Salut, nu poti amesteca Standard Peripheral Library (SPL) cu ceea ce genereaza CubeMx.

CubeMx genereaza setarile pentru periferice in starea de reset si doar atat, pe cand utilizarea SPL presupune scrierea "de mana" a functiilor de initializare a perifericelor (RCC, GPIO, Timere, SPI etc.). Este adevarat ca te poti inspira din functiile de initializare generate Cube MX pentru a crea/scrie aceleasi functii utilizand SPL, insa denumirile vor fi diferite.

Mai jos gasesti varianta SPL si varianta HAL al aceluiasi proiect. Fa comparatii ca sa intelegi mai bine ceea ce am vrut sa scriu.

Trebuie sa alegi una din ele si ti-as recomanda sa alegi OpenSTM32 pentru lucrul cu SPL si Atollic pentru lucrul cu HAL.

L.E.: Fisierul F411_blink_HAL, nu este complet. Atasez si fisierul complet

Atentie: fisierele de mai jos sunt pentru STM32F411-DISCOVERY!!!

F411_blink_SPL.txt F411_blink_HAL.txt

F411_blink_HAL_complet.txt

Editat de nico_2010
Link spre comentariu

 Vai ce complicat este STM 32. Acum inteleg de ce este atat de popular arduino..

Eu de exemplu de cativa ani am incercat ceva cu arduino si tot incepator am ramas, desi cu ajutorul mai multor persoane am reusit sa realzez (adica ei pt mine) niste proiecte destul de utile pt mine la serviciu. Fara exemplele date in Arduin IDE  nu pot face nimic al meu. Ce sa fac, nu sunt "creat" pentru asta desi mi-as dori foarte mult sa-mi fac singur toate jucariile pt "inventiile" mele. insa nu oricie este in stare.  Mi-am dat seama ca daca arduino nu am reusit sa-l invat  STM 32 deja e de domeniul fantasticii. Nu reusesc sa memorez propriul numar de telefon .. care il folosesc de 8 ani.. Credeam  ca STM se poate programa la fel ca arduino..

Ma multumesc mult pentru raspunsuri.

Va multumesc mult pt timpul acordat.

 

Editat de cusnir
Link spre comentariu
  • 2 luni mai târziu...

Creează un cont sau autentifică-te pentru a adăuga comentariu

Trebuie să fi un membru pentru a putea lăsa un comentariu.

Creează un cont

Înregistrează-te pentru un nou cont în comunitatea nostră. Este simplu!

Înregistrează un nou cont

Autentificare

Ai deja un cont? Autentifică-te aici.

Autentifică-te acum



×
×
  • Creează nouă...

Informații Importante

Am plasat cookie-uri pe dispozitivul tău pentru a îmbunătății navigarea pe acest site. Poți modifica setările cookie, altfel considerăm că ești de acord să continui.Termeni de Utilizare si Ghidări