mars01 Posted November 5, 2018 Share Posted November 5, 2018 Folosesc Eclipse + GCC si nivelul de optimizare folosit este -O3. Deocamdata ma joc cu un Nucleo F072, imi place ca are si doua canale DAC de 12bit iar preturile la STM32F0 sunt destul de scazute. Remarc ca sunt mult mai relaxat cand programez STM32 decat in cazul uC-urilor pe 8bit si in STM32F4 o pot face si mai usor, in microPython. Quote Link to comment Share on other sites More sharing options...
nico_2010 Posted January 23, 2019 Author Share Posted January 23, 2019 (edited) Salut din nou! Astazi ne vom plictisi cu o alta facilitate oferita de unele dintre timerelele existente in STM32F103C8T6 (BluePill) si anume "Gated mode", adica facilitatea de a fi declansat de un impus exterior pentru o perioada bine definita de timp, perioada in care -declansat fiind de frontul crescator sau descrescator (functie de setari) - va incepe sa numere impulsuri provenite fie de la oscilatorul intern, fie provenite de la un semnal periodic extern microcontroller-ului. In acest moment nu cred ca mai este necesar sa insist cu privire la primii pasi de lansare a unui nou proiect in CubeMX, asa ca trecem la partea concreta a lucrurilor. Facem setarile pentru ST_Link (Serial wire), RCC (High speed Clock HSE - Crystal/ceramic resonator) si pentru TIM2, TIM3 si TIM4 (acesta din urma pentru generarea unui semnal dreptunghiular de test), ca in fotografia de mai jos: - Pentru situatia in care nu folosim functia de declansare a TIM2 in varianta "Gated mode", ci doar utilizam TIM2 pentru numaratoarea unor impulsuri externe aplicate pe pinul ETR2 (PA.0), urmand ca funtia de poarta sa fie realizata cu un bistabil tip D si o poarta SI, a carei comanda de declansare a portii este realizata de pinul GATE (PA.3, in acest caz), la care este disponibil un semnal cu perioada de 0.5Hz generat de TIM3. - Pentru varianta in care folosim ca poarta pinul TI2FP2 (corespunzator PA.1), atunci realizam urmatoarea setare (fotografia de mai jos): In aceasta ultima varianta, semnalul de poarta provenit de la pinul GATE va actiona pinul TI2FP2 si va determina declansarea TIM2 in vederea numararii impulsurilor aplicate pe pinul ETR2. Urmatorul pas este sa configuram cele trei timere (TIM2, TIM3 si TIM4) pentru ca acestea sa actioneze in spiritul dorintelor noastre, respectiv TIM2 ca numarator (cu sau fara functia de Gated mode), TIM3 ca baza de timp pentru generarea semnalului de poarta (1 secunda in starea "1" logic, 1 secunda in starea "0" logic) si TIM4 pentru generarea semnalului de test, incazul de fata de 18MHz. Asa ca realizam setarile ca mai jos: - Fara facilitatea de "Gated mode" TIM2 si intreruperea pentru TIM2 TIM3 si intreruperea pentru TIM3 TIM4 Pentru functia de "Gated mode" prezint doar setarile pentru TIM2, restul raman neschimbate. si intreruperea pentru TIM2 Generam proiectul prin apasarea icon-ului "Generate source code..." si vom obtine fisierul "main.c" (alaturi de celelalte fisiere generate de CubeMX), care contine setarile pentru starea de reset a microcontroller-ului, respectiv: /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** ** This notice applies to any and all portions of this file * that are not between comment pairs USER CODE BEGIN and * USER CODE END. Other portions of this file, whether * inserted by the user or by software development tools * are owned by their respective copyright owners. * * COPYRIGHT(c) 2019 STMicroelectronics * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_hal.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim4; /* USER CODE BEGIN PV */ /* Private variables ---------------------------------------------------------*/ uint32_t timer_count = 0; uint32_t OvfCount = 0; uint32_t NbrOfCounts = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); static void MX_TIM3_Init(void); static void MX_TIM4_Init(void); void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE END PFP */ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * * @retval None */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration----------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM2_Init(); MX_TIM3_Init(); MX_TIM4_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start_IT(&htim3); HAL_TIM_Base_Start_IT(&htim2); HAL_TIM_OC_Start(&htim4, TIM_CHANNEL_1); HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } /* TIM2 init function */ static void MX_TIM2_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig; TIM_MasterConfigTypeDef sMasterConfig; htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 0xffff; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2; sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED; sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1; sClockSourceConfig.ClockFilter = 0; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM3 init function */ static void MX_TIM3_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig; TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; htim3.Instance = TIM3; htim3.Init.Prescaler = 7199; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 9999; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_TIM_OC_Init(&htim3) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sConfigOC.OCMode = TIM_OCMODE_TIMING; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM4 init function */ static void MX_TIM4_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig; TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; htim4.Instance = TIM4; htim4.Init.Prescaler = 0; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 1; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_TIM_OC_Init(&htim4) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sConfigOC.OCMode = TIM_OCMODE_TOGGLE; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_OC_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } HAL_TIM_MspPostInit(&htim4); } /** Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : GATE_Pin */ GPIO_InitStruct.Pin = GATE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GATE_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @param file: The file name as string. * @param line: The line in file as a number. * @retval None */ void _Error_Handler(char *file, int line) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while(1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ Si pentru ca trebuie sa avem si noi o contributie la ce a generat "inteligenta artificiala" vom adauga exact parte esentiala, si anume tratarea intreruperior, respectiv aceasta portiune de cod: void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { static uint16_t pinstate = 0; if(htim->Instance == TIM3) { { __HAL_TIM_CLEAR_IT(&htim3, TIM_FLAG_UPDATE); } pinstate = HAL_GPIO_ReadPin(GATE_GPIO_Port,GATE_Pin); if( !pinstate) { HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, SET); } else { HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET); timer_count = TIM2->CNT; NbrOfCounts = (OvfCount<<16)|(timer_count); TIM2->CNT = 0; OvfCount = 0; } } if(htim->Instance == TIM2) { { __HAL_TIM_CLEAR_IT(&htim2, TIM_FLAG_UPDATE); } OvfCount++; } } in zona cuprinsa intre /* USER CODE BEGIN 4 */ si /*USER CODE END 4*/. Compilam programul si nu ne mai rqamane decat sa implementam functia de poarta folosind un 74HC74 si un 74HC08, ca mai jos: Daca folositi STM Studio veti obtine in dreptul variabilei NbrOfCounts valoarea de 18000005 Hz (cu setarile de mai sus). Restul prezentarii mai tarziu. Edited January 23, 2019 by nico_2010 Quote Link to comment Share on other sites More sharing options...
nico_2010 Posted December 23, 2019 Author Share Posted December 23, 2019 (edited) Astazi va propun o aplicatie practica a timere-lor din STM32F103C8T6. Pentru a nu deveni plictisitor cu setarile (pe care presupun ca le-ati inteles, din tutorial), voi trece la aspectele concrete ale aplicatiei. Un prim aspect al acestei aplicatii este acela ca foloseste doua timere (TIM2 si TIM3) de 16 biti inseriate software pentru a obtine un contor de impulsuri de 32 de biti De ce am ales varianta asta: pentru a evita intreruperile. Un alt aspect este acela ca unul din cele doua timere (TIM2) este folosit ca "Slave" in configuratia "Gated mode" ce are ca trigger TI2FP2 si sursa de semnal (CLOCK) externa. Timerul TIM3 este setat, de asemenea, in ca "Slave", in configuratia "Gated mode", insa in cazul lui sursa de semnal (CLOCK) va fi indeplinita de un semnal intern (ITR1) asigurat de evenimentul "UPDATE" generat de TIM2. Semnalul de poarta este asigurat de TIM1, care functioneaza in regim de intreruperi cu frecventa de 0.5Hz 1Hz, iar pinul PA3 (GATE) este comutat din LOW in HIGH la fiecare secunda. Cam asa arata setarile: Pinout: Clock: TIMER1_config + setari de intreruperi: TIMER2_config: TIMER3_config: Si fisierul "main: /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** ** This notice applies to any and all portions of this file * that are not between comment pairs USER CODE BEGIN and * USER CODE END. Other portions of this file, whether * inserted by the user or by software development tools * are owned by their respective copyright owners. * * COPYRIGHT(c) 2019 STMicroelectronics * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_hal.h" /* USER CODE BEGIN Includes */ #include "u8glib/u8g.h" #include "u8g_arm.h" #include "string.h" #include "stdio.h" #include "stdint.h" /* USER CODE END Includes */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi2; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; /* USER CODE BEGIN PV */ /* Private variables ---------------------------------------------------------*/ u8g_t u8g; uint16_t Tim2_Ticks, Tim3_Ticks; unsigned long frequency = 0; char data_ready = 0; char c[50]; /*Varianta soft de calibrare, din pacate este specifica fiecarui modul BluePill*/ #define CORRFACTOR 1.0000775060067155204528350947198 /*------------------------------------------------------------------------------*/ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI2_Init(void); static void MX_TIM1_Init(void); static void MX_TIM2_Init(void); static void MX_TIM3_Init(void); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE END PFP */ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * * @retval None */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration----------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_SPI2_Init(); MX_TIM1_Init(); MX_TIM2_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start_IT(&htim1); HAL_TIM_Base_Start(&htim2); HAL_TIM_Base_Start(&htim3); HAL_GPIO_WritePin(RST_GPIO_Port, RST_Pin, RESET); HAL_Delay(10); HAL_GPIO_WritePin(RST_GPIO_Port, RST_Pin, SET); u8g_InitComFn(&u8g, &u8g_dev_pcd8544_84x48_sw_spi, u8g_com_hw_spi_fn); HAL_Delay(10); u8g_SetRot180(&u8g); HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ sprintf(c, "%lu", frequency); u8g_FirstPage(&u8g); do { u8g.font = u8g_font_ncenR14; if(frequency ==0) { u8g_DrawStr(&u8g, 35, 25, c); u8g_DrawStr(&u8g, 30, 45, "Hz"); }else{ u8g_DrawStr(&u8g, 1, 25, c); u8g_DrawStr(&u8g, 30, 45, "Hz"); } } while (u8g_NextPage(&u8g)); HAL_Delay(100); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } /* SPI2 init function */ static void MX_SPI2_Init(void) { /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES; hspi2.Init.DataSize = SPI_DATASIZE_8BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_SOFT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM1 init function */ static void MX_TIM1_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig; TIM_MasterConfigTypeDef sMasterConfig; TIM_OC_InitTypeDef sConfigOC; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig; htim1.Instance = TIM1; htim1.Init.Prescaler = 7199; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 9999; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } if (HAL_TIM_OC_Init(&htim1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sConfigOC.OCMode = TIM_OCMODE_TIMING; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_OC_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM2 init function */ static void MX_TIM2_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig; TIM_SlaveConfigTypeDef sSlaveConfig; TIM_MasterConfigTypeDef sMasterConfig; htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 0xffff; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2; sClockSourceConfig.ClockPolarity = TIM_CLOCKPOLARITY_NONINVERTED; sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1; sClockSourceConfig.ClockFilter = 0; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_RISING; sSlaveConfig.TriggerFilter = 0; if (HAL_TIM_SlaveConfigSynchronization(&htim2, &sSlaveConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /* TIM3 init function */ static void MX_TIM3_Init(void) { TIM_SlaveConfigTypeDef sSlaveConfig; TIM_MasterConfigTypeDef sMasterConfig; htim3.Instance = TIM3; htim3.Init.Prescaler = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 0xffff; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED; sSlaveConfig.InputTrigger = TIM_TS_ITR1; if (HAL_TIM_SlaveConfigSynchronization(&htim3, &sSlaveConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } } /** Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE() ; __HAL_RCC_GPIOA_CLK_ENABLE() ; __HAL_RCC_GPIOB_CLK_ENABLE() ; /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GATE_Pin | RST_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, DC_Pin | CE_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : GATE_Pin RST_Pin */ GPIO_InitStruct.Pin = GATE_Pin | RST_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : DC_Pin CE_Pin */ GPIO_InitStruct.Pin = DC_Pin | CE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { static uint16_t pinstate = 0; if (htim->Instance == TIM1) { __HAL_TIM_CLEAR_IT(&htim1, TIM_FLAG_UPDATE); // HAL_GPIO_TogglePin(GREEN_LED_GPIO_Port, GREEN_LED_Pin); pinstate = HAL_GPIO_ReadPin(GATE_GPIO_Port, GATE_Pin); if (!pinstate) { HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, SET); } else { for(uint16_t i = 0;i<5000; i++){} HAL_GPIO_WritePin(GATE_GPIO_Port, GATE_Pin, RESET); Tim2_Ticks = TIM2->CNT; Tim3_Ticks = TIM3->CNT; frequency = ((Tim3_Ticks << 16) | (Tim2_Ticks))* CORRFACTOR; TIM2->CNT = 0; TIM3->CNT = 0; } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @param file: The file name as string. * @param line: The line in file as a number. * @retval None */ void _Error_Handler(char *file, int line) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ Am aplicat un semnal de 1MHz provenit din modulul u-blox NEO_M8N (care are TCXO). Rezultatul Si ceva mai funky: Si schema de principiu: STM32_FCV_simplu.pdf Edited December 23, 2019 by nico_2010 Quote Link to comment Share on other sites More sharing options...
cusnir Posted January 19, 2020 Share Posted January 19, 2020 Am incercat sa fac update la libraria mea pt Blue pill cu STSW-STM32054 si nu sa intamplat nimic in afara de dezarhivare? Cum trebuia procedat. Am incercat sa rezolv eroarea "no source": Error: #869: could not set locale "" to allow processing of multibyte characters ../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash_ex.c: 0 warnings, 1 error compiling stm32f1xx_hal_flash.c... "no source": Error: #869: could not set locale "" to allow processing of multibyte characters ../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_flash.c: 0 warnings, 1 error compiling system_stm32f1xx.c... eroarea apare imediat dupa ce CubeMX genereaza codul pt setarile procesorului.. Nu stiu daca am ales solutia potrivita.. Quote Link to comment Share on other sites More sharing options...
nico_2010 Posted January 20, 2020 Author Share Posted January 20, 2020 (edited) Salut, nu poti amesteca Standard Peripheral Library (SPL) cu ceea ce genereaza CubeMx. CubeMx genereaza setarile pentru periferice in starea de reset si doar atat, pe cand utilizarea SPL presupune scrierea "de mana" a functiilor de initializare a perifericelor (RCC, GPIO, Timere, SPI etc.). Este adevarat ca te poti inspira din functiile de initializare generate Cube MX pentru a crea/scrie aceleasi functii utilizand SPL, insa denumirile vor fi diferite. Mai jos gasesti varianta SPL si varianta HAL al aceluiasi proiect. Fa comparatii ca sa intelegi mai bine ceea ce am vrut sa scriu. Trebuie sa alegi una din ele si ti-as recomanda sa alegi OpenSTM32 pentru lucrul cu SPL si Atollic pentru lucrul cu HAL. L.E.: Fisierul F411_blink_HAL, nu este complet. Atasez si fisierul complet Atentie: fisierele de mai jos sunt pentru STM32F411-DISCOVERY!!! F411_blink_SPL.txt F411_blink_HAL.txt F411_blink_HAL_complet.txt Edited January 20, 2020 by nico_2010 Quote Link to comment Share on other sites More sharing options...
cusnir Posted January 20, 2020 Share Posted January 20, 2020 (edited) Vai ce complicat este STM 32. Acum inteleg de ce este atat de popular arduino.. Eu de exemplu de cativa ani am incercat ceva cu arduino si tot incepator am ramas, desi cu ajutorul mai multor persoane am reusit sa realzez (adica ei pt mine) niste proiecte destul de utile pt mine la serviciu. Fara exemplele date in Arduin IDE nu pot face nimic al meu. Ce sa fac, nu sunt "creat" pentru asta desi mi-as dori foarte mult sa-mi fac singur toate jucariile pt "inventiile" mele. insa nu oricie este in stare. Mi-am dat seama ca daca arduino nu am reusit sa-l invat STM 32 deja e de domeniul fantasticii. Nu reusesc sa memorez propriul numar de telefon .. care il folosesc de 8 ani.. Credeam ca STM se poate programa la fel ca arduino.. Ma multumesc mult pentru raspunsuri. Va multumesc mult pt timpul acordat. Edited January 20, 2020 by cusnir Quote Link to comment Share on other sites More sharing options...
cusnir Posted January 20, 2020 Share Posted January 20, 2020 Ati incercat sa folositi flowcode cu microcontrolerele din familia ARM? Programarea se face tot prin jucaria aia care se baga in USB? Quote Link to comment Share on other sites More sharing options...
nico_2010 Posted January 20, 2020 Author Share Posted January 20, 2020 Nu am incercat Flowcode. Nu mai am resursele necesare sa invat ceva nou. Quote Link to comment Share on other sites More sharing options...
vijelie02 Posted March 23, 2020 Share Posted March 23, 2020 Buna ziua, Aceasta placa sub numele bluepill are trecut in specificatii la ADC asa: 2x12 bit synchronized 10 channels. Are 10 canale de 12 biti fiecare, dar n-am inteles ce or fi aia 2x12 sincronizati. Ma poate ajuta cineva cu o "traducere" mai clara? Multumesc, Quote Link to comment Share on other sites More sharing options...
nico_2010 Posted March 23, 2020 Author Share Posted March 23, 2020 Nu, are 2 ADC_uri, fiecare cu 10 canale. Poti folosi citirea celor 10 canale folosind DMA Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.