Jump to content
ELFORUM - Forumul Electronistilor
Sign in to follow this  
CV-03-BTF

convertor pentru lampa xenon

Recommended Posts

Caut de mai multa vreme schema unui convertor pentru amorsarea unei lampi xenon auto.Am incercat sa procur convertoare auto defecte si cumva sa le copiez.Am gasit 2 modele ..Unul cu 4 fire din care 2 la alimentare si 2 la lampa dar era inglobat in rasina si l-am distrus, iar cel de al doile-a are in jur de 10 - 12 pini ? si o groaza de componente electronice.Avand in vedere ca valoarea unui astfel de modul este pe piata destul de mare ma gandesc ca poate exista solutii mai simple si implicit mai economice de amorsare a unei astfel de lampi . MULTUMESC ANTICIPAT

Share this post


Link to post
Share on other sites

Instalatia de iluminat cu becuri cu Xenon este de 2 tipuri.Primul tip care este mai vechi este compus dintr-o singura cutie in care este inghesuit atat trafo ridicator cat si electronica de comanda.Deoarece nu are racirea corespunzatoare si totul este inghesuit acest model nu este asa fiabil si de aceea a aparut celalalt.Varianta mai nou si mai fiabila se compune din 2 cutii, una contine electronica iar celalalta trafo ridicator. De ce ai nevoie este trafo ridicator ( banuiesc ) :rolleyes: dar tensiunea de iesire este de cativa KiloVolti si nu este usor de bobinat, in plus trebuie sa se potriveasca cu electronica.Cel mai convenabil este sa cauti un set nou si lampile cu xenon care le ai sa le folosesti ca rezerve.Pretul unui set este in jur de 300 Euro.

Share this post


Link to post
Share on other sites

nu are nimeni o schema pentru prima varianta? macar de principiu este de ajuns sa alimentezi lampa de 20-23.000 volti?

Share this post


Link to post
Share on other sites
Guest mister_rf

Problema nu este asa de simpla...

Detalii:

The automotive HID (high intensity discharge) headlight lamps are often referred to as xenon lamps but they are more of a specialized metal halide lamp than anything else.

The main part numbers are:

D2S - plain

D2R - like D2S but with heat-resistant black paint on spots to control the light output pattern

D1S - like D2S, but with integral ignitor

D1R - like D2R but with integral ignitor

The above are 35 watt lamps. D2S and D1S types nominally produce 3200 lumens of light and the D2R and D1R types nominally produce 2800 lumens of light

 

 

This sort of lamp consists of a tubular outer bulb approx. 10 mm (.4 inch) in diameter which contains the arc tube (inner bulb). The outer bulb is made of special quartz such as cerium-doped quartz which blocks most ultraviolet, especially the more dangerous short and medium wavelengths as well as much of the 365-366 nM longwave mercury line cluster.

The arc tube or inner bulb is made of plain fused quartz and has tungsten electrodes with the distance between the tips approx. 4.2, maybe 5 millimeters (approx. or slightly under .2 inch). Its construction resembles that of a miniaturized short arc lamp, but true short arc lamps have a much more concentrated arc.

 

The arc tube has xenon gas in it at a couple of atmospheres to maybe a few atmospheres when cold and a few to maybe several atmospheres when hot. There is also mercury in the bulb, and when it is vaporized the mercury adds at least 20 atmospheres of pressure for a total pressure of around or maybe even over 30 atmospheres.

 

Metal halides - salts - are also in the arc tube. The formulation in automotive HID lamps includes sodium and scandium halides (probably iodides) and maybe traces of others such as lithium and thallium halides.

 

More ordinary metal halide lamps do not have high pressure xenon but have low pressure argon instead. The high pressure xenon is used to obtain some usable light output during warmup before the other ingredients have vaporized.

 

 

The electrical requirements of D2 type lamps are nasty. They require ballasts which are more difficult to homebrew than other ballasts. I strongly encourage hobbyists, do-it-yourselfers, and hackers to *NOT* try this.Try homebrewing a D2 ballast only if you have the patience of two saints, lots of electrical and electronic project skills including high voltage skills and skill in homebrewing high voltage transformers with the combined difficulties of flyback transformers and xenon trigger transformers, and a budget for replacing lots of blown parts before you get it working. You are better off buying ballasts from Osram, Bosch, or Aromat (a division of Matsushita). For one thing, these lamps require special sockets made by few manufacturers and normally sold only to ballast manufacturers.

The D2 types require a starting pulse. 7 kilovolts may on an average spark through these bulbs, but for reliability you need more, maybe 10 or possibly 12 kilovolts. Automotive use requires ability to restart a hot bulb with the mercury vapor pressure high, and this requires even more voltage - 12 to 15 kilovolts and maybe even more for good reliability. The usual ballasts supposedly produce starting pulse voltages like 18 kilovolts minimum, 20 kilovolts typical.

 

D1 types have an integral ignitor which the ballast has to work with.

 

Starting pulses must be repeated frequently until the arc is established.

 

The ballast must supply an open circuit output voltage - other than the starting pulses - of over 300 volts, preferably 400 or maybe preferably 450 volts - to force the arc to establish.

 

D1 and D2 type lamps are 35 watt lamps. Once the arc is established, the ballast must supply limited current or else the arc will draw extreme current and this will be bad for the bulb and/or other parts. The voltage across the lamp is normally around 80-90 volts when it is warmed up, but will be less during warmup. The ballast must handle a lamp voltage possibly as low as 16 volts early in warmup, although this voltage usually bottoms out higher - probably at least in the 20's of volts.

 

The ballast must deliver 35 watts to the lamp when the voltage across the lamp is between 70 and 110 volts. When this voltage is lower, the ballast must deliver at least .5 amp but generally no more than 2 amps and preferably as close to 35 watts as possible. Higher currents are preferred - a partially warmed up metal halide lamp sometimes has an unstable arc at lower current.

 

An automotive grade ballast often delivers boosted power (above 35 watts) at some times during warmup to give near-full light output. Note that a xenon arc or a mercury vapor arc does not produce visible light as efficiently as a metal halide arc does. Automotive grade ballasts with boosted power at some points of warmup have circuitry that models the thermal characteristics of the bulb. The maximum safe current for the bulb's electrodes must not be exceeded during a power boost during warmup.

 

A voltage across the bulb higher than 110 volts only occurs in the early stage of establishing the arc or if the bulb is failing. The ballast should deliver enough power to heat up the electrode tips enough for the arc to establish - more is better and over 35 watts is OK as long as the current is not excessive. But excessive power delivered to an aging bulb can cause the bulb to explode.

 

D1 and D2 lamps and most other metal halide lamps require AC. DC is tolerable briefly, and then preferably only if the bulb is cold. A DC electric field, hot quartz or hot glass, and salts or alkalis is not a good combination - electrolysis effects can occur which can create weak spots or cracks in the arc tube.

 

The AC delivered to a D1 or D2 type bulb usually has a frequency of a couple hundred to a few hundred Hz. Higher frequencies are probably OK with D2 types but the ignitors in D1 types may only work correctly or even be adequately conductive in a certain range of frequencies.

 

The AC current waveform in a D1 or D2 type lamp is traditionally a squarewave or close to a squarewave. Other waveforms have higher peak current for a given average current or RMS current, and the higher peak current is harder on the electrodes and may shorten the life or cause problems with the use of higher currents during warmup.

 

Metal halide lamps should not be overpowered, except where permissible for accelerated warmup and near-full light output during warmup. Overpowering one will shorten its life and increase the risk of the lamp exploding.

Underpowering a metal halide lamp is also bad. If the electrodes are not hot enough, they do not do a good job of conducting electrons into the arc and voltage drop in this process (known as the "cathode fall") is excessive. Excessive cathode fall causes positive ions in the arc to hit the electrode at excessive speed which "sputters" electrode material onto the inner surface of the arc tube.

It is not recommended to experimentally operate metal halide lamps at reduced power. Besides the bad effects of high cathode fall on hot electrodes, an unusual temperature pattern can have the chemicals in the arc tube condense in locations that can block some of the light. And if the electrode cathode falls are excessive and unequally so, a DC electric field can result, which can cause destructive electrolysis effects on hot salts on hot quartz. This can cause the arc tube to crack.

 

Metal halide lamps should have power input within 10 percent of their rated wattage.

 

Share this post


Link to post
Share on other sites

Ca orice bec cu descarcare in gaze la inalta presiune, el se amorseaza la o tensiune de ordinul kV, apoi tensiunea ii scade dramatic de sute de ori. Tensiunea de lucru este de ordinul voltilor nu kV. Totusi becurile cu Xe sunt sensibile la suprasolicitarea in tensiune. Asta face constructia unui balast destul de anevoioasa si inaccesibila. Balasturile pt. Xe sunt electronice, adica nu utilizeaza un drosel magnetic si un starter (ignitor) ci se folosesc de componente semiconductoare.

Share this post


Link to post
Share on other sites

Ar fi interesant daca s-ar putea face un convertor. Mai cumparam becuri si treaba e ca si rezolvata :finga: Dar cine are o schema de asa ceva??? Transformatoul se paote rezolva cu unul de prin comert, cred :tonqe: Daca noi cumparam totul de-a gata la ce s-au mai facut forumurile??? :smt004

Share this post


Link to post
Share on other sites

Aici ai citeva linkuri cu scheme de invertere

http://www.zetex.com/3.0/appnotes/apps/an1.pdf

http://www.siliconchip.com.au/cms/A_30504/article.html

O schema simpla gasesti aici-http://shems.h1.ru/?01/svet04.php.Poti incerca un BD de putere mai mare de 20 watt,pe radiator.Infasurarile sint realizate cu sirma emailata I-0,5mm,II-0,3mm,III-0,15mm.Intii bobinezi primarul,apoi secundarul[peste primar].Intre primar si secundar izolezi cu foita de condensator sau banda teflon.In secundar ar fi bine sa poti izola fiecare strat cu foita [sau teflon].La final indicat e sa imbibi traful in rasina epoxi.

Ca transformator se indica o ferita tip E de 8x8mm.Zic ca se poate utiliza miezul,eventual doua miezuri in paralel,de la becurile cu neon din comert [cele care se fileteaza in soclu].Se gasesc o multime arse![mai ales cele made in China!]

Daca montajul nu oscileaza inverseaza intre ele capetele infasurarii I.

Succes!

Share this post


Link to post
Share on other sites

HMMMM...PANA LA URMA M-AM LINISTIT.. INTR-UN ASTFEL DE MODUL ESTE ELECTRONICA "LA GREU" .. AM REUSIT SA FAC ROST DE CATEVA MODULE DEFECTE DAR E FOARTE GREU DE URMARIT CARE ESTE PROBLEMA CU ELE...

 

 

Blind: Nu mai scrie cu caps de acum inainte te rog. E obositor pentru citit.

Share this post


Link to post
Share on other sites

se poate aprinde, in conditzii destul de bune, cu o metoda extrem de simpla.

E adevarat ca nivelul rudimentar la care e sursa asta, poate cauza instabilitate ori alte probleme.

Dar daca nu vrei sa aprinzi becul, instantaneu, ca la mashini, (adica nu-l pui pe masina, deloc)

Un oshcilator de putere, cu doua tranzistoare, urmat de un multiplicator de tensiune, pentru aprindere. e tot ce itzi trebuie ;)

Posted Image

Cele doua 2n3055 se pot inlocui shi cu BUT11A(F) sau altele.

Poate sa mai fie necesar inca un etaj sau doua de multiplicare...

Dupa cum observatzi, multiplicatorul alimenteaza cu inalta tensiune, doar cat e becul stins, dupa ce se aprinde, scade impendantza becului, scade tensiunea pe ieshirea din traf, shi se

stabilizeaza, relativ, pe la 80V, pentru ca nu pompeaza curent ca o sursa industriala, becul o sa se aprinda/incalzeasca lent, mult mai lent decat cu industriala, dar in cateva secunde, poate max 30-40 ar trebui sa ajunga la maximum de output shi sa fie in regim,

Astfel, se mai prelungeshte shi viatza becului, chiar mai mult decat s-ar putea crede. In absentza brutalizarilor repetate, cauzate de shofer, care nu mai semnalizeaza "radaru!" sau "Da-te, mah!!!" shi drosselu' industrial, care pompa curent in bec, ca 'ntru-un spital de urgentza :d , pentru a obtzine lumina utilizabila, din secunda zero, in care ai aprins farurile.

Traful se poate bobina pe un miez de la choppere de calculator, mai zdravane, de 250w sau asemanator.

Sa aiba la ieshire, in gol aprox 120Vvv cu un curent de 0.5A max

Tuningul e obligatoriu, la intrefier, la rezistorii de polarizare shi la C7.

Apropo, o data incarcat, multiplicatorul ramane incarcat mult timp dupa deconectarea de la alimentare!!! descarca-l cu un rezistor de 10-20 de ohm 2-3w, de fiecare data cand te hotarashti sa mai lucrezi la alimentatorul asta!!!

Va salut. :partyman:

Share this post


Link to post
Share on other sites

HMMMM...PANA LA URMA M-AM LINISTIT.. INTR-UN ASTFEL DE MODUL ESTE ELECTRONICA "LA GREU" .. AM REUSIT SA FAC ROST DE CATEVA MODULE DEFECTE DAR E FOARTE GREU DE URMARIT CARE ESTE PROBLEMA CU ELE...

ma gandeam daca shtii de unde ash gasi un bec, la 2nd hand... mailme sau pm daca se poate ;)

Share this post


Link to post
Share on other sites

oare nu s-ar putea folosi trafuri d-alea de FIT, din televizoare???Tavi, tu cunoşti mai bine trafurile cu pricina, ce părere ai???

Share this post


Link to post
Share on other sites

cu un traf de linii sa triplor de FIT, potzi face ignitorul, dar becul o sa aiba nevoie de curent mare, dupa aprindere. rezistentza interna sacde foarte mult, shi trebuie sa continui sa pompezi curent, preferabil curent constant, in bec, altfel se stinge...dar, shi la traf shi la triplor, pentru o tensiune de ieshire de 24kv trebuie sa ai curse de aprox 120Vvv pe primar, p[lus faptul ca nu-i place sa fie alimentat in alte forme de unda decat aia de baleiaj, la 15 ori 30khz, in "dinte de fierastrau"trafu din schema aia, tebuie sa debiteze cam 100v in gol, iar din cauza ca reactzia se petrece din acelashi traf, e oarecum limitat curentul maxim de ieshire.dupa ce arcul electric e stabil, tensiunea scade pe la 80v, chiar daca la aprindere poate sa aiba nevoie de 10kv ;)

Share this post


Link to post
Share on other sites

cu un traf de linii sa triplor de FIT, potzi face ignitorul, dar becul o sa aiba nevoie de curent mare, dupa aprindere. rezistentza interna sacde foarte mult, shi trebuie sa continui sa pompezi curent, preferabil curent constant, in bec, altfel se stinge...dar, shi la traf shi la triplor, pentru o tensiune de ieshire de 24kv trebuie sa ai curse de aprox 120Vvv pe primar, p[lus faptul ca nu-i place sa fie alimentat in alte forme de unda decat aia de baleiaj, la 15 ori 30khz, in "dinte de fierastrau"trafu din schema aia, tebuie sa debiteze cam 100v in gol, iar din cauza ca reactzia se petrece din acelashi traf, e oarecum limitat curentul maxim de ieshire.dupa ce arcul electric e stabil, tensiunea scade pe la 80v, chiar daca la aprindere poate sa aiba nevoie de 10kv ;)

Ai rezolvat transformatorul ? sau invertorul cu l-or chema?Acuma dezgrop si eu cai morti:))

Share this post


Link to post
Share on other sites

Cum adica "sa-l rezolv"? :nas: Am facut invertoare de genul asta, de le-am pierdut numarul. Pentru alimentat CCFL-uri si CFL-uri si, cel mai important, sfere cu plasma. :da

Share this post


Link to post
Share on other sites

Vorbeam cu tipul care a inceput subiectul ... am un bec hid de 35w si ma intreban daca a gatat convertorul 12- 80+ HV .....sunt ceva scmene de convertoare ?, am nevoie de unul cat mai eficient sub 4w disipati

Share this post


Link to post
Share on other sites
Sign in to follow this  

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.